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Abstract

We present two new algorithms for generating uniformly
random samples of pages from the World Wide Web, build-
ing upon recent work by Henzinger et al. (Henzinger et al.
2000) and Bar-Yossef et al. (Bar-Yossef et al. 2000). Both
algorithms are based on a weighted random-walk method-
ology. The first algorithm (DIRECTED-SAMPLE) operates
on arbitrary directed graphs, and so is naturally applica-
ble to the web. We show that, in the limit, this algorithm
generates samples that are uniformly random. The second
algorithm (UNDIRECTED-SAMPLE) operates on undirected
graphs, thus requiring a mechanism for obtaining inbound
links to web pages (e.g., access to a search engine). With
this additional knowledge of inbound links, the algorithm
can arrive at a uniform distribution faster than DIRECTED-
SAMPLE, and we derive explicit bounds on the time to con-
vergence. In addition, we evaluate the two algorithms on
simulated web data, showing that both yield reliably uniform
samples of pages. We also compare our results with those of
previous algorithms, and discuss the theoretical relationships
among the various proposed methods.

Introduction

The World Wide Web is a massive network of information,
reflecting ideas and trends from throughout society. Ac-
curate characterizations of the web’s content and structure
provide a window into the interests of millions of individu-
als and organizations around the globe. However, obtaining
good estimates of these and other quantities is difficult, due
to the web’s sheer size (about 109 pages (Inktomi/NEC Jan-
uary 19 2000; Lawrence & Giles 1999) and growing), and
its distributed and dynamic nature. Exhaustive enumera-
tion of all web pages is a technically challenging and costly
task, and any results become rapidly outdated (Brin & Page
1998; Kahle 1997). A more reasonable approach is to infer
statistics based on a random sample of web pages.

Generating a uniform sample of web pages is itself a
nontrivial problem. Several methods have been proposed,
though no standard methodology has emerged. Lawrence
and Giles (Lawrence & Giles 1998) queried major search

* Part of this work was conducted while visiting NEC Re-
search Institute.

engines to estimate the overlap in their databases. They
infer a bound on the size of the indexable web and es-
timate the search engines’ relative coverages. The same
authors (Lawrence & Giles 1999) employ a sampling ap-
proach based on random testing of IP addresses to deter-
mine characteristics of hosts and pages found on the web,
and to update their size estimate for the web. Bharat and
Broder (Bharat & Broder 1998) propose another methodol-
ogy based on generating random queries.

Other methods make explicit use of the hyperlink struc-
ture of the web. We can view the web as a directed
graph whose nodes correspond to web pages and edges
correspond to hyperlinks. A sample of web pages can
be generated by crawling the web graph according to a
specified policy. Henzinger et al. (Henzinger et al.
2000) present a crawling policy that is based on reweight-
ing the results of a random crawl in order to approxi-
mate a uniform sample. Their algorithm (which we re-
fer to as PAGERANK-SAMPLE) makes use of the PageR-
ank of each web page. PageRank is a measure of the
popularity of a web page, and is used in part by Google
(http : //www. google, tom/) to rank search results
(Brin & Page 1998). The authors explain how their method
can ideally yield a nearly uniform sample, though they
point out a few practical and theoretical barriers, discussed
further in the Comparative Experiments Section. In their
experimental results, the generated sample still appears bi-
ased toward web pages that have large numbers of inbound
links.

Bar-Yossef et al. (Bar-Yossef et al. 2000) propose an al-
ternative random-walk method for sampling web pages uni-
formly. Their method (REGULAR-SAMPLE) assumes that
the web is an undirected graph, so that hyperlinks can be
followed backward as well as forward. Since the web is
not truly undirected, in practice the algorithm must query a
search engine for the inbound links to each page. Their ex-
periments seem to indicate that, when applied to the actual
web, this type of approximation results in a biased sample.

In this paper, we develop a new algorithm for generating
uniform samples from the web, also built upon a random-
walk methodology. Our approach (DIRECTED-SAMPLE)
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works on arbitrary directed graphs, so it is directly appli-
cable to the web. We prove that, in the asymptotic limit, the
algorithm generates a uniform sample of web pages--that
is, the expected number of occurrences in the sample is the
same for all pages on the web. To our knowledge, this is the
first algorithm with provable asymptotic convergence on the
real web. In the Algorithm UNDIRECTED-SAMPLE
and Analysis Section, we modify the algorithm to operate
on an undirected graph (UNDIRECTED-SAMPLE), where we
assume knowledge of the inbound links to every page. In
this setting, we show that the problem and analysis is con-
siderably simplified. In addition to guaranteeing conver-
gence, we can derive formal bounds on the time to conver-
gence.

In the Empirical Results and Comparisons Section,
we test our DIRECTED-SAMPLE algorithm on a simu-
lated directed web graph, showing that it generates near-
uniform samples that are independent of the number of
links to or from a page. We directly compare our
UNDIRECTED-SAMPLE algorithm with the PAGERANK-
SAMPLE and REGULAR-SAMPLE algorithms, using sim-
ulated web data under undirected modeling assumptions.
In these experiments, both UNDIRECTED-SAMPLE and
REGULAR-SAMPLE outperform PAGERANK-SAMPLE. We
isolate the key approximation in PAGERANK-SAMPLE that
we believe leads to biased samples, and we show that a
modified PAGERANK-SAMPLE can be thought of as a spe-
cial case of DIRECTED-SAMPLE. Finally, we conclude with
a summary and discussion of future research directions.

Setup and Notation
Broder et al. (Broder et al. 2000) find that the web can
be divided into four main components: a central strongly
connected core, a set of pages that can be reached from the
core but do not connect back to it, a set of pages that con-
nect to the core but cannot be reached from it, and a set
of pages disconnected from the core. We seek to generate
a uniform sample from among those pages in the core and
some of the pages reachable from the core. Almost any
sampling method based on a random walk cannot hope to
sample pages that are not reachable from the starting page.
We believe that, for the purposes of statistical testing, this
subset of the web is sufficiently representative of most pub-
licly accessible web pages of interest.

We view the web as a directed graph where web pages
are nodes and hyperlinks are edges. Denote the set of all
web pages as S = {1, 2,..., n} and assume without loss
of generality (w.l.o.g.) that page 1 is within the strongly
connected core (e.g., http : //www. yahoo, com/). Let
X be an n x n matrix defined by

1, if there is a link from page i to page j, OR

Xij =
ifi=j, OR
if i has no outgoing links and ] = 1.

0, otherwise.

The matrix X can be thought of as a connection matrix
whose non-zero elements denote connections between var-

ious pages in the web. Note that we assume w.l.o.g, that
each node is connected to itself (i.e., the diagonal elements
of X equal 1), and that "dead end" pages without hyper-
links connect back to page 1. We also make the following
assumption:

nAssumption 1 There exists n >_ 1 such that (X)ij > 0
for all i, j E S.

In other words, every page can be reached from every other
page by traversing edges. This assumption holds for all
pages in the strongly connected core and some pages reach-
able from the core.

Let P denote a matrix obtained by normalizing each row
of X so that it sums to one:

X~ Vi, j E S.Pij - ~s~s Xis’

We can then think of P as the transition probability matrix
associated with a random walk in which a hyperlink is cho-
sen uniformly at random. Assumption 1 implies that the
associated random walk is irreducible, and since the diago-
nal elements of P are positive, it is also aperiodic. Thus, it
follows from a standard result in stochastic processes that
there exists a stationary distribution 7r = (Tr(1),..., 7r(n))
associated with P such that

~(i) = Z ~(J)P~’ Vie 
jEs

Algorithm DIRECTED-SAMPLE and Analysis
The stationary distribution 7r represents the asymptotic fre-
quency of visiting each page under the random walk with
transition probability P. Thus, for a sufficiently long walk,
we would expect that the frequency that a web page i is vis-
ited is 7r(i). So, for each web page i, if we include it in our
sample with probability 1/7r(i), then the expected number
of occurrences of each web page in our sample should be
the same, yielding a uniformly random sample. Unfortu-
nately, we do not know the true value of 7r(i), so we must
estimate it. For each web page i collected in our initial
crawl, we compute an estimate of the stationary probabil-
ity 7r(i) by performing another random walk and recording
how often the walk visits page i.

The formal definition of the algorithm follows. Note that
there are five design parameters: So, N, K, M, and ~.

Algorithm DIRECTED-SAMPLE

I. Start at some web page so. Crawl the web according to
transition probability P for N time periods.

2. After N time periods, continue to crawl the web for an
additional K time periods. Let X1,. ¯., XK denote the
web pages visited during this crawl, and let 79N denote
the collection of distinct web pages collected during this
crawl. Note that I/)NI _< K since some web pages might
be repeated.
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3. For each page l E D/v, compute an estimated station-
ary probability #(l) as follows. Crawl the web accord-
ing to P for M time periods starting at page l. Let

l lZ0, Z1,..., Z~t denote the sequence of web pages that
are visited during the crawl, where Z0t = 1. Then, let

~M=1 l{z’=l}
#(l) = M 

where l{z~=t} is an indicator random variable which is
1 if Ztr is equal to l, and 0 otherwise.

4. For 1 < I < K, include page Xt in the final sample set
79 with probability/3/#(Xt), where/3 is some positive
number such that 0 </3 < mint=l ..... K ~(Xl)"

The following proposition establishes the algorithm’s
soundness: for sufficiently large N and M, the returned
sample set 79 is a uniform sample. Specifically, in the
asymptotic limit, the expected number of occurrences of
page i in 79 is the same for all pages i E S.

Proposition 1 For any web page i E S, let

Wi = number of occurrences of page i in 79,

where D is the final set of web pages returned after step
four of the algorithm. Then, for all i E S,

lim E[Wi] =/3K.
N,M-~oo

Proof. Recall that the variables X1,.. ., XK denote the
collection of web pages gathered in step two of the algo-
rithm. For 1 < l < K, let a random variable Yt be defined
by

Xt with probability/3/#(Xt)
Y~ = A otherwise,

where ~ represents the event that Xt is not included in our
sample. Thus, the collection of random variables {Yt : Yt 7~

A} corresponds to the set of web pages in our final sample
79. If so denotes the starting page for our crawl in step one,
it follows that

lim E[Wi] = lim E[@’l{v,=i}]

I

N,M--+oo N,M--+oo L’--’ ]l=1
K /3 Pr{Xt =i}

= lira y~’ #-~
N,M---+oo /=1

where the last equality follows from the fact that Yt = i if
and only if Yt ¢ z~ and Xt = i. Since Xt corresponds to
the state at time I + K of our random walk,

lim E[IV/] = lim 80i"N,M-+oo N,M-+oo /=1

It is a standard result in stochastic processes that

lim (pN+t] = lim #(i) = 7r(i)x /SOiN----~ oo M---+ oo

which implies that

lim E[Wi] =/3K.
N,M--+oo

We do not yet have a bound on time to convergence.
Very large values of N and M may be required to pro-
duce a near-uniform sample, potentially affecting the prac-
ticality of running DIRECTED-SAMPLE on the entire web.
Note that the parameter N is the "burn-in" time. During
this phase, we need only perform a memoryless crawl; we
need not record any information along the way. The pur-
pose of burn-in is to eliminate any dependence on s 0 and
to induce a near-stationary distribution on the random vari-
ables XI,. ¯ ¯, XK, which are instantiated in step two. Pa-
rameter M is the number of pages traversed in order to
estimate the stationary distribution over X1,. ̄  ¯, XK. Be-
cause web pages with a high number of inbound links (e.g.,
http : //www. yahoo, com/) are visited often, the algo-
rithm produces accurate estimates of their stationary proba-
bilities even with a relatively small M. However, web pages
that have small numbers of inbound links (the vast majority
of pages) occur very infrequently during the crawl, and thus
M may need to be very large to obtain good estimates for
these pages. In the next section, we see that we can elimi-
nate this estimation phase (step three) altogether, if we can
’assume access to the inbound links to every page.

We are currently pursuing techniques to reduce and
bound the time to convergence for DIRECTED-SAMPLE. We
are also examining the potential use of the algorithm in con-
junction with a focused crawler (Chakrabarti, van den Berg,
& Dom 1999; Diligenti et al. 2000), in order to generate
uniform samples of topic-specific subsets of the web with-
out traversing the entire web.

Algorithm UNDIRECTED-SAMPLE and
Analysis

In the DIRECTED-SAMPLE algorithm, each page i collected
in step two is included in the final sample with probability
inversely proportional to its estimated stationary probability
~’(i). The quality of the resulting sample depends signifi-
cantly on how accurately we are able to estimate the true
stationary probability 7r(i).

In this section we show that, if we assume the web is
an undirected graph, then the algorithm becomes greatly
simplified and expedited. This assumption is equivalent to
requiring knowledge of all pages that point to a given web
page. The assumption is partially justified by the fact that
many search engines allow queries for inbound links to web
pages. Note, however, that the search engines’ databases
are neither complete nor fully up to date, and performing
many such queries can be time consuming and costly.



In this undirected setting, let X be an IN-by-IN matrix
defined by

1 ifi=jori~j
Xij = 0

otherwise. ’

where i ~ j means that there is either a hyperlink from i to
j or from j to i. Thus, the matrix X denotes the connection
matrix between various web pages on the web, ignoring di-
rectionality. In this case, Assumption 1 holds for all pages
in the strongly connected core, all pages reachable from the
core, and all pages that connect to the core.

Consider a transition probability matrix P defined by

-- Xij
Pij - Y-~ses Xis’ Vi,j E S.

The matrix P corresponds to a transition probability where,
at any given web page, one hyperlink is chosen uniformly at
random to follow (including from among those which point
to the page).

For any web page i E S, let d(i) denote the degree of
i, or the sum of the number of links from page i and the
number of links to i. The degree d(i) is the total number
of connections associated with page i. Application of the
DIRECTED-SAMPLE algorithm to the case of an undirected
graph relies on the following lemma.

Lemma 1 If P is irreducible, then the associated station-
ary distribution fr of P is given by

d(i) + 1 d(i) 1
= Isl + d(s) = ISl + 2iEi’ Vi ¯ 

where IE] denotes the total number of edges in the graph.

Proof. Since Pii > 0 for all i ¯ S, it follows that P is
both irreducible and aperiodic. It follows that a stationary
distribution exists and it is unique. Thus, it suffices to show
that

~(i) = ~(j)P~i, Vi ¯ S.
jES

Note that

d(j) + 1 

--
~ ISl + E.es d(s)’ d(j) + 

j:j=i or j¢-*i

1

j:j=i or j~+i

d(i) + 

ISl + ~ses d(s)
=

The desired conclusion follows. ¯
The above iemma provides us with an explicit formula

for the stationary distribution of P. Thus, we can use the
same basic algorithm presented in Section, but without step

three, since we do not need to estimate the stationary proba-
bility. This eliminates the potentially very long crawl of M
steps required in the directed case. The formal definition of
the algorithm follows.

Algorithm UNDIRECTED-SAMPLE

1. Start at some web page so. Crawl the web according to
transition probability P for N time periods.

2. After N time periods, continue to crawl the web for an
additional K time periods. Let X1, ¯.., XK denote the
web pages visited during this crawl.

3. For 1 < l < K, page Xt will be included in our sample
with probability fl/(d(X1) + 1), where fl is some posi-
tive number such that 0 < fl < 1 + mini=l ..... g d(Xt).

The proof of Proposition 1 immediately extends to the
current case. Moreover, by assuming that the web is mod-
eled as an undirected graph, we are able to put a bound on
the deviation of our sample from a truly-random sample.

Let G = (S, E) denote the (undirected graph) of 
web, where S denotes the set of web pages, and g denotes
the collection of hyperlinks (assuming that they are undi-
rected). Let d. = maxxes d(x) denote the maximum de-
gree, and let 3’. denote the diameter of the web. Also, let
r denote the collection of shortest paths between any two
points in the web graph, and let

b = max 1{~’ ¯ r:e ¯ "),}1.eE,f

That is, b denotes the maximum number of paths in F that
have a single edge in common. Thus, b measures the "bot-
tleneck" in the web graph.
Proposition 2 For each i ¯ S, let

W~ = number of occurrences of page i in sample.

Then,

ECWl] 13 < ( B___~__,/21glq-ISI-d(so)- N
K ISl+21gl -- " ]kd(i)-}-lV d(so)-t-1 * ’

where

)~. < max 1 (a. ~27.b]’ 1 (d. + 1) 

Proposition 2 implies that for a sufficiently large value of
N, the expected number of occurrences of each web page
in the sample approaches flK/(ISI + 21El). It also shows
that the rate of convergence is exponential in the parameter
.~., which depends on graphical properties of the web, such
as its maximum degree, diameter, and bottleneck. In the
future, we plan to compute estimates of these quantities for
the real web.

The proof of Proposition 2 relies on the following results
from Diaconis and Stroock (Diaconis & Stroock 1991) 
geometric bounds for eigenvalues of Markov chains.
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Lemma 2 Let P be a transition probability for a reversible
Markov chain on a state space X with IXI = m and sta-
tionary distribution 7r. Assume that P is irreducible with
eigenvalues 1 = Ao > )~1 >_ ".. )~m--1 -- 1. Then, for al l
xEX,

 (y)l < 1--
An’

where A, = max (A1, IAm-ll).

Proof. See Proposition 3 in (Diaconis & Stroock 1991). 

Lemma 3 Let (X, E) be a connected graph, lfP denotes
a random walk on this graph, and A 1 denotes the second
largest eigenvalue of P, then

___ 1 21El
d2.7.b

where d. = max d(x) is the maximum degree, 7. is the
diameter of the graph, and

b=m2 l{v e r :e e v}l,
where F denotes the collection of shortest paths between
any two points in the graph.

Proof. See Corollary 1 in (Diaconis & Stroock 1991). 

Lemma 4 Let (X, E) be a connected graph which is not
bipartite. For each x 6 X, let or= be any path of odd length
from x to x. Let ~, be the collection of such paths, one for
each x 6 X. If P denotes a random walk on this graph,
and )~min denotes the smallest eigenvalue of P, then

2
Amin _~ -1 + --

d,a,b, ’

where d, is the maximum degree, a, is the maximum num-
ber of edges in any a 6 ~, and

Proof. See Corollary 2 in (Diaconis & Stroock 1991). 
Since each node in our web graph has a self loop, we

can choose E in the above lemma to be a collection of self
loops, one for each x 6 X. Then,

2
/~min ~ --1-[- ~-,.

This is the bound that we will use in our proof of Proposi-
tion 2, which follows.

Proof. Recall that X1,...,XK denote the collection of
web pages collected during step two. For 1 < l < K,
let a random variable Yt be defined by

Xt with probabilityfl/(d(Xt) 1)
l~ = A

otherwise,

where A represents the event that Xt is not included in our
sample. Thus, the collection of random variables {Yt : Yt #
A} corresponds to the set of web pages in our final sample.
Thus,

K

Wi = ~ l{y,=~},
/=1

which implies that

Thus,

K
fl Pr {Xt = i}E[W ] = d(i) 

/----1

/9
[ E~_i] 2tEl + IsI ]

1 ~( ~+ Pr{Xt=i} /9 
= -K d(i 1 2[EI+ISl

l=1

__ /9 ~=1 (Pr{X,:i, d(i)+l~ K(d(i) 1) 2~-[ ~Si~[ ]

<<- K(d(i) 1) (Pr {Xt = i} - "~(i))

where the last equality follows from Lemma 1. Since So is
our starting web page, and Xt corresponds to the web page
that is visited at time N + l of our crawl, it follows from
Lemma 2 that

IPr {Xt = i} - ~(i)1 < i 1 - ~(so) - ~(so) ,, Vl=l,...K,

where A. = max {A1, IAminl} and A1 denotes the second
largest eigenvalue of the transition p_robability P" and A rain
denotes the smallest eigenvalue of P. Thus,

EWi ~ < ~ ~ ~AN
K 21El + ISl - d(i) q- 1 V ~(sO) 

= (~¢//2lgl4"lSl-d(s°)-l)A~’d(so)+l

where the last equality follows from the expression of the
stationary probability given in Lemma 1. It follows from
Lemmas 3 and 4 that

[( )]A. _< max 1 (d. -~- 1))27.b ] 1
(d, + 1) ’

from which the desired result follows. ¯

Empirical Results and Comparisons
In this section, we present experimental evaluations of
the DIRECTED-SAMPLE and UNDIRECTED-SAMPLE algo-
rithms, including comparisons with previous algorithms.
We describe how a modified PAGERANK-SAMPLE algo-
rithm can be viewed as a special case of DIRECTED-
SAMPLE, and we isolate the key approximation step in
PAGERANK-SAMPLE that we believe leads to biased sam-
pies.
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DIRECTED-SAMPLE

We test the DIRECTED-SAMPLE algorithm on a simulated
web graph of 100,000 nodes, 71,189 of which belong to
the primary strongly connected component. The graph was
generated using Pennock et al.’s (Pennock et al. ) extension
of Barab~isi and Albert’s (Barab~isi & Albert 1999) model
of web growth. The model generates undirected graphs
with edge distributions almost identical to that of the real
web. We converted the resulting undirected graph into a di-
rected graph by assigning directionality to edges at random.
We ran the DIRECTED-SAMPLE algorithm with parameters
N = 5 x 105, M = 2 x 106, and K = 5 x 10~, resulting in
a sample of size [D[ = 2057. Because our method is based
on a random walk, we expect the numbers of inbound and
outbound links to be the most likely source of sample bias.
Figure 1 compares the distribution of inbound links in the
sample set 79 to the true distribution over the entire graph.
Figure 2 displays the same comparison for outbound links.
The likelihood that a particular page occurs in the sample
appears to be independent of the number of links to or from
that page.

O

2

O.5

O

5 10 15 20
Sampled Outlink Distribution

_J
25

5 10 15 20 25
Ratio

-- Generated Sample

_ . .......... ~’.?, 7:.= . ::.~’?f........

2 4 6 8 10 12 14 16 18 20
Number of Outllnke

Figure 2: Comparison of sampled and actual outbound link
distributions for the DIRECTED-SAMPLE algorithm.

0 5 10 15 20 25
Sampled Inl~nk Dlatrlbution

O 6 10 15 20 25
Ratio

2 , , --

O.5

0
2 4 6 8 10 12 14 16 18 20

Number of Inl~nks

Figure h (a) Distribution of inbound links for the sim-
ulated web graph. (b) Distribution of inbound links for
pages returned by the DIRECTED-SAMPLE algorithm. (c)
Ratio of the sampled distribution to the true distribution,
for both DIRECTED-SAMPLE and a truly random sampling
algorithm.

Figure 3 shows a histogram of the node ID numbers in
the sample. All nodes in the graph are grouped into ten
equally-spaced buckets. Figure 3(a) shows the proportion
of sampled nodes chosen from each bucket. If the sample is
uniform, then the proportion in each bucket should be about
the same. Figure 3(b) plots the ratio of the proportion 
each bucket to the true expected value under uniform sam-
piing. From these figures, there does not appear to be any
systematic bias in our sampling.

R..o

O.,

o.e eB=. N.~..

Figure 3: Distribution of node numbers for samples gener-
ated by the DIRECTED-SAMPLE algorithm.

UNDIRECTED-SAMPLE

In this section, we present empirical results of the
UNDIRECTED-SAMPLE algorithm. The experiments were
performed on an undirected graph of 100,000 nodes
(71,189 in the main connected component), generated ac-
cording Pennock et al.’s (Pennock et al. ) model of web
growth. The burn-in time N is set at 2000, and our start-
ing node So is set to node number 50,000. The generated
sample size is 1791 = 10,000 nodes. With the choice of

= 1.999, about one in every five web pages visited is
accepted into our sample.

Figure 4 shows the distribution of the number of edges in
the graph versus that of our sample. The bottom portion of
Figure 4 shows the ratio between the proportion of nodes
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in the sample having a certain number of edges versus the
true proportion. Overall, there seems to be no systematic
bias toward nodes with small or large degrees. Figure 5
shows the histogram of the node numbers generated under
the algorithm.

O e ~o 1B =o =n

R=llo

°°,~/ ., , ,
’ N .... ’o ...... ’ ’ ’

i

Figure 4: Distribution of the number of edges for samples
generated by the UNDIRECTED-SAMPLE algorithm.

of i is chosen at random; with probability d, any node in
the graph is chosen at random. Since choosing a node at
random from among all nodes is not feasible, Henzinger et
al. (Henzinger et al. 2000) approximate this step by choos-
ing from among all nodes visited so far. The final sample is
generated by choosing from among the visited nodes with
probability inversely proportional to their PageRank.

The REGULAR-SAMPLE algorithm conducts a random
walk on a dynamically-built graph constructed such that ev-
ery node has the same degree (i.e., so that the graph is reg-
ular). The construction is performed by assuming that the
degree of every node in the original graph is bounded by
some constant dma~. The new graph is built by adding the
appropriate number of self loops at each node, so that every
node has the same degree. Because each node in this graph
has the same degree, the associated stationary distribution
for the random walk on this graph is uniform.

True Edge Distribution (Total Nodes = 71189)

0 E 10 18 20 20
Edge Distribution of PAGERANK-0AMPLE

Figure 5: Distribution of node numbers for samples gener-
ated by the UNDIRECTED-SAMPLE algorithm.

Comparative Experiments

In this section, we compare the results of UNDIRECTED-
SAMPLE with those of PAGERANK-SAMPLE (Henzinger et
al. 2000) and REGULAR-SAMPLE (Bar-Yossef et al. 2000).

Let n denote the total number of nodes in the graph. The
PAGER A N K- S AMPLE algorithm conducts a random walk on
the graph: at each node i, with probability 1 - d a neighbor

Edge Distribution of REGULAR-0AMPLE

0.1/ 10.08!

O/ 5 10 16 20 ---’~20
Edge Distribution of UNDIREOTEO-OAMPLE

Figure 6: (a) Distribution of edges for the simulated undi-
rected graph. (b) Distribution of edges for pages returned
by the PAGERANK-SAMPLE algorithm. (c) Distribution 
edges for pages returned by the REGULAR-SAMPLE algo-
rithm. (d) Distribution of edges for pages returned by the
UNDIRECTED-SAMPLE algorithm. (e) Ratio of the sampled
distribution to the true distribution, for all three algorithms.

We used a burn-in time of 2000 for UNDIRECTED-
SAMPLE and REGULAR-SAMPLE, and an initial seed
set size of 1000 for PAGERANK-SAMPLE. We ran
the UNDIRECTED-SAMPLE and PAGERANK-SAMPLE al-
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gorithms until samples of size 10,000 were collected.
The REGULAR-SAMPLE algorithm generated a sample of
2,980,668 nodes, 14,064 of which were unique (the vast
majority of nodes were repeats due to self loops). We
assumed knowledge of the true dmax = 937 for the
REGULAR-SAMPLE algorithm. Figure 6 shows the true
edge distribution for the simulated web graph, and the sam-
pled distributions for all three algorithms. We see that
both UNDIRECTED-SAMPLE and REGULAR-SAMPLE pro-
duce what appear to be uniform samples, without any no-
ticeable bias based on the number of edges incident onto a
node. On the other hand, PAGERANK-SAMPLE does appear
to exhibit a consistent bias toward pages with large numbers
of edges.

We should note that the original idea underlying the
PAGERANK-SAMPLE algorithm can be seen in some sense
as a special case of our DIRECTED-SAMPLE algorithm. The
idealized crawling policy of PAGERANK-SAMPLE corre-
sponds to a transition probability PH given by

1-d if j is a child of i

otherwise.

where dour(i) denotes the number of outlinks of web page
i. Once the random walk is performed, each page i that
is visited will be included in the sample with probability
that is inversely proportional to the PageRank of i, de-
noted by PR(i). It turns out that PR(i) is the stationary
probability of page i under the transition probability PH.
So, the idea underlying PAGERANK-SAMPLE is very simi-
lar to DIRECTED-SAMPLE, though employing an alternative
crawling policy and associated stationary distribution.

We believe that the source of bias in PAGERANK-
SAMPLE stems from the approximation step required. As
Henzinger et al. (Henzinger et al. 2000) note, we cannot
actually conduct a random walk on the web graph accord-
ing to transition probability matrix PH. Recall that under
PH, with probability d, a web page is chosen at random
from among all pages. However, this is not feasible. In-
deed, if we could choose a web page at random, then there
would be no need for the algorithm in the first place. So, the
authors approximate this step by randomly choosing from
among the pages visited so far. We conjecture that this is
the primary source of error contributing to the bias in the
resulting sample.

Conclusion
We presented two new algorithms (DIRECTED-SAMPLE

and UNDIRECTED-SAMPLE) for uniform random sampling
of World Wide Web pages. Both algorithms generate sam-
ples that are provably uniform in the limit. There are trade-
offs between the two algorithms. The DIRECTED-SAMPLE
algorithm is naturally suited to the web, without any as-
sumptions, since it works on any directed graph, though

it may take a long time to converge. The UNDIRECTED-
SAMPLE algorithm converges faster, and we can formally
bound its convergence time, but the algorithm requires an
assumption that hyperlinks can be followed backward as
well as forward. Empirical tests verify that both algo-
rithms appear to produce unbiased uniform samples. On
simulated web data, the UNDIRECTED-SAMPLE algorithm
performs as well as the REGULAR-SAMPLE algorithm and
better than the PAGERANK-SAMPLE algorithm--two meth-
ods recently proposed in the literature. We discuss the
theoretical connections between DIRECTED-SAMPLE and
PAGERANK-SAMPLE, highlighting what we believe is the
key approximation step in PAGERANK-SAMPLE that leads
to biased samples.
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